najmniejsza liczba pierwsza większa od podanej, jeśli podana liczba nie jest liczbą pierwszą. Przykład: „8 nie jest liczbą pierwszą, ponieważ dzieli się przez 2. Najmniejszą liczbą pierwszą
LICZBY RZECZYWISTE Kalwakin: I. Liczby rzeczywiste: Uczeń: 1. Poda przykłady liczb naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkuje liczbę do odpowiedniego zbioru 2. Stosuje cechy podzielności liczb 3. Stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3, itp. 4. Wykorzystuje dzielenie z resztą do przedstawiania liczby naturalnej w postaci a k + r 5. Przedstawia liczby wymierne w różnych postaciach 6. Wykona działania w zbiorach liczb całkowitych, wymiernych i rzeczywistych 7. Porównuje liczby wymierne 8. Stosując odpowiednie twierdzenia wykona działania na pierwiastkach tego samego stopnia 9. Wyłączy czynnik przed znak pierwiastka, włączy czynnik pod znak pierwiastka 10. Porównuje pierwiastki bez użycia kalkulatora 11. Poda przykład liczby zawartej między dwiema danymi liczbami 12. Zna i umie stosować wzory skróconego mnożenia (dot. kwadratów i sześcianów) 13. Stosuje wzory skróconego mnożenia i obliczy wartość wyrażenia zawierającego pierwiastki kwadratowe 14. Wykona działania na wyrażeniach algebraicznych 21 cze 21:07 bezendu: 21 cze 21:09 Kaja: Kalwakin jeśli masz jakieś konkretne zadania to napisz 21 cze 21:13 Janek191: N − zbiór liczb naturalnych N = { 0,1,2,3,4,5,6,7, .... } −−−−−−−−−−−−−−−−−−−−− Z − zbiór liczb całkowitych Z ={ 0, −1,1,−2,2,−3,3,−4,4, ... } −−−−−−−−−−−−−−−−−−−−−− W − zbiór liczb wymiernych 1 1 2 1 3 W = { 0,,,, , , ... } 1 2 1 3 1 l W = { w = : l, m ∊ Z ⋀ m ≠ 0 } m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− l Liczbę wymierną można przedstawić w postaci ułamka , gdzie l , m są liczbami m całkowitymi i m ≠ 0 Oczywiście liczby naturalne i całkowite są liczbami wymiernymi. −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Liczby niewymierne, to liczby, których nie da się przedstawić w postaci ułamka. Np. √2, √3, √5, √7, √11, π , .... −−−−−−−−−−−−−−−−−−−−−−−−−−− Wśród liczb naturalnych ( całkowitych ) wyróżniamy liczby pierwsze i złożone. Liczby pierwsze mają tylko dwa dzielniki. Liczby złożone mają więcej niż dwa dzielniki. Np. liczby pierwsze: 2, 3, 5, 7, 11,13,17,19,23, ... bo D2 = { 1, 2}, D3= { 1,3} , D5 = {1,5}, D7 = { 1,7}, .... Liczby złożone: 4, 6,8,9,10, .... bo D4 = { 1,2,4}, D6 = { 1,2,3,6}, D8 = { 1,2,4,8}, D9 = { 1,3, 9 }, D10 = { 1,2,5,10} Zadanie: Wypisz liczby naturalne, całkowite, wymierne i niewymierne z podanych liczb: 1 10 3 − 5, , 4, π, √7, , − , 100, − 77, √13 2 5 2 10 Odp. Liczby naturalne: 4, = 2, 100 5 10 Liczby całkowite: − 5, 4, = 2, 100, − 77 5 1 10 3 Liczby wymierne: −5, , 4, , −, 100, − 77 2 5 2 Liczby niewymierne: π, √7, √13 −−−−−−−−−−−−−−−−−−−−−−−− 5 4 100 − 5 = −, 4 = , 100 = , ... 1 1 1 21 cze 21:46 Janek191: Liczba naturalna jest podzielna przez 3, jeżeli suma jej cyfr jest podzielna przez 3. Np. 10305 jest podzielna przez 3, bo suma cyfr 1 + 0 + 3 + 0 + 5 = 9 jest podzielna przez 3. Liczba 1 111 nie jest podzielna przez 3, bo 1 + 1 + 1 + 1 = 4 nie jest podzielna przez 3. −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Liczba naturalna jest podzielna przez 9, jeżeli suma jej cyfr jest podzielna przez 9. Np. 17 163 jest podzielna przez 9, bo 1 + 7 + 1 + 6 + 3 = 18 dzieli się przez 9 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Liczba naturalna jest podzielna przez 2 , jeżeli jest parzysta, czyli gdy cyfrą jedności tej liczby jest: 0 lub 2 lub 4 lub 6 lub 8 np. 220, 352, 10 724, 72 556, 77 778 −−−−−−−−−−−−−−−−−−−−−−−−−−− Liczba naturalna jest podzielna przez 5 , jeżeli jej cyfrą jedności jest 0 lub 5. Np. 1 777 220, 37 420,275 −−−−−−−−−−−−−−−−−−−−−−−−−− Liczba naturalna jest podzielna przez 10 , jeżeli jej cyfrą jedności jest 0. Np. 1000, 23 450, 111 110 −−−−−−−−−−−−−−−−−−−−−−− itd. 21 cze 22:06 Janek191: Liczbę parzystą można przedstawić jako : 2n, gdzie n ∊ N Liczbę nieparzystą można przedstawić jako : 2 n +1, gdzie n ∊ N Liczbę podzielną przez 3 można przedstawić jako : 3 n , gdzie n ∊ N Liczbę podzielną przez k można przedstawić jako: k*n , gdzie n ∊ N , k ∊ N − ustalona liczba naturalna 21 cze 22:13 Janek191: Ad. 4 a k + r 13 : 2 = 6, r 1 bo 13 = 6*2 + 1 ; a = 6, k = 2, r = 1 37 : 5 = 7, r 2 bo 37 = 7*5 + 2 ; a = 7, k = 5, r = 2 21 cze 22:16 Kalwakin: właśnie nie mam konkretych zadań do tego, ale bardzo bym prosił o krótkie omówienie tych podpunktów 22 cze 07:06 5-latek: 1 3 No np zadanie nr 7 Porownaj dwie liczby i −−czy sa rowne , czy 1/23/5 Nr 8 (√35)2 Nr9 −−−−wylacz czynnik spod pierwiastka √160 wlacz czynnik pod pierwiastek 2√5 Kolego /ko to sa wymagania wobec Ciebie ktore powinienes znac i zastosowac w praktyce. To w wszystko mieliscie na lekcjach z tego dzialu. Przeciez chodzilaes/as do szkoly a nie uczyles sie w domu sam/a . Nikt Tobie(przynajmniej ja )tutaj np nie bedzie wypisywal tutaj dzialan ktore wykonuje sie na pierwiastkach czy potegach . Jesli podasz odpowiedni przyklad do rozwiazania to sie oczywiscie pomoze tutaj masz prawie wszystko co CI potrzebne + poszukaj na google co jeszcze Cie interesuje 22 cze 11:20 Automat matematyczny działa na następującej zasadzie: do danej liczby dodaje 1 lub ją podwaja. Do automatu wprowadzono liczbę 0. Ten po wykonaniu pewnej liczby operacji otrzymał liczbę 100. Jaka jest najmniejsza liczba operacji, którą musi wykonać automat, żeby otrzymać taki wynik? A) 8 B) 9 C) 10 D) 28 E) 43
Liczby rzeczywisteTu jesteś > Liczby > Rodzaje liczb > Liczby rzeczywiste Każda liczba jest liczbą rzeczywistą. Więc, zbiorem liczb rzeczywistych są wszystkie liczby - wymierne oraz niewymierne. Zbiór liczb rzeczywistych oznaczany jest symbolem $\Bbb{R}$. Liczbami rzeczywistymi są przykładowe liczby: $$1,\sqrt{3},-7,\frac12,\pi,-\sqrt{13}$$
Najmniejszą liczbą doskonałą, czyli liczbą naturalną będącą sumą wszystkich swoich dzielników właściwych, jest liczba 1, 5, 6 czy 28? Odpowiedź na to pytanie w "Milionerach"; była Liczby rzeczywiste ujemne Czy liczby ujemne to liczby rzeczywiste Zbiór liczb rzeczywistych symbol Liczby rzeczywiste przykłady Tak, zero jest liczbą rzeczywistą. Należy przy tym także do zbioru liczb wymiernych, całkowitych i naturalnych (w zależności o przyjetej umowy). Czy w zbiorze liczb rzeczywistych istnieje taka liczba, która nie jest ani liczbą wymierną, ani liczbą niewymierną? Wyświetl całą odpowiedź na pytanie „Czy 0 jest liczbą rzeczywistą”… Liczby rzeczywiste ujemne Liczby ujemne, jak sama nazwa wskazuje, to wszystkie liczby rzeczywiste o znaku ujemnym, czyli mniejsze od 0 ( 0 nie ma znaku). Zbiór liczb ujemnych oznaczamy symbolem R−. Czy liczby ujemne to liczby rzeczywiste Liczby ujemne, jak sama nazwa wskazuje, to wszystkie liczby rzeczywiste o znaku ujemnym, czyli mniejsze od 0 ( 0 nie ma znaku). Zbiór liczb ujemnych oznaczamy symbolem R−. Zbiór liczb rzeczywistych symbol Zbiór liczb rzeczywistych, to zbiór wszystkich liczb – wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem mathbb{R} . Liczby rzeczywiste przykłady Przykładem liczby rzeczywistej jest dowolna liczba wymierna lub niewymierna. Są to więc liczby: 0, 1, 12347593, -4564, 1/2, π, √2, √5, 1-2√2, podstawa logarytmu naturalnego i wiele innych liczb. Takich liczb jest nieskończenie wiele.
Liczby rzeczywiste można utożsamiać z punktami prostej (tzw. prosta lub oś liczbowa). Liczby rzeczywiste spełniają następujące aksjomaty (a, b, c, x — dowolne liczby rzeczywiste): 1) a + b = b + a (przemienność dodawania); 2) (a + b) + c = a + (b + c) (łączność dodawania); 3) istnieje jedyna liczba x spełniająca równanie a
Liczby rzeczywiste są to wszystkie liczby wymierne i niewymierne. Liczby rzeczywiste można utożsamiać z punktami na osi liczbowej. Każdej liczbie rzeczywistej można przyporządkować jeden punkt na osi liczbowej i na odwrót, każdy punkt na osi liczbowej odpowiada dokładnie jednej liczbie rzeczywistej. Zbiór liczb rzeczywistych oznaczamy jako \(R\) i obejmuje on wszystkie rodzaje liczb. Każda liczba rzeczywista, gdy jest liczbą wymierną ma rozwinięcie dziesiętne skończone lub nieskończone okresowe, a gdy jest liczbą niewymierną - nieskończone nieokresowe. Moc zbior liczb rzeczywistych wynosi continuum \(\mathfrak{c}\). W zbiorze liczb rzeczywistych wykonywane są następujące działania: dodawanie, odejmowanie, mnożenie, dzielenie. Przykłady liczb rzeczywistych: \(0, \: 7, \: \sqrt{15}, \: \pi, \: \dfrac{1}{2}\) Zobacz również Obwód trapezu Twierdzenie Talesa Kąt ostry Granica ciągu Zdarzenia niezależne Zdarzenie losowe Ciąg arytmetyczny NWW - Najmniejsza wspólna wielokrotność Obwód równoległoboku Kąt pełny Nierówności z wartością bezwzględną Przestrzeń probabilistyczna Hiperbola Mnożenie ułamków dziesiętnych Dowód - istota Aksjomaty i konstrukcje liczb – metody ścisłego definiowania liczb używane w matematyce. Aksjomaty liczb to warunki, jakie muszą spełniać pewne obiekty oraz działania na nich, aby mogły być uznane za liczby danego rodzaju (np. liczby naturalne, liczby wymierne itp.). Co w tym rozdziale ?Liczby rzeczywiste – co to takiego ?Liczby rzeczywiste – przykładyLiczby naturalneLiczby całkowiteLiczby wymierneLiczby niewymierneLiczby parzysteLiczby nieparzysteLiczby przeciwneLiczby odwrotneLiczby pierwszeLiczby złożoneLiczba piNotacja wykładniczaUłamkiProcentyJakim procentem jednej liczby jest druga liczbaUstalenie liczby na podstawie jej procentuProcent składanyPotęgiPierwiastkiNWWNWDUsuwanie niewymierności z mianownikaLogarytmyWartość bezwzględnaRównanie z wartością bezwzględnąNierówności z wartością bezwzględnąZbioryOś liczbowaJak określić współrzędne punktów A,B,C,D,EPodsumowanie Liczby rzeczywiste – co to takiego ? Liczby rzeczywiste jest to zbiór, który składa się z sumy dwóch zbiorów: zbioru liczb wymiernych oraz zbioru liczb rzeczywiste Liczby rzeczywiste – przykłady Zbiór liczb rzeczywistych jest największym zbiorem występującym w matematyce, dlatego też do tego zbioru należy każda liczba np:1,5,9,\frac{5}{7},π, Ogólnie takich liczb jest nieskończenie wiele. Spełniają aksjomat ciągłości, to znaczy, że nie występują luki pomiędzy liczbami na osi liczbowej. Liczby naturalne Liczby naturalne to liczby całkowite, dodatnie:1,2,3,4,5,6,7,8,9,10,11,12,... Zbiór liczb naturalnych oznaczamy literą N. Możemy więc zapisać:N=\{1,2,3,4,5,6,7,8,9,10,11,12,...\} Liczby całkowite Zbiór liczb całkowitych jest to zbiór liczb naturalnych jak i zbiór liczb przeciwnych do nich, wliczamy tu również liczbę zero. Zatem można zapisać, że liczby całkowite są to:...,−9,−8,−7,−6,−5,−4,−3,−2,−1,0,1,2,3,4,5,6,7,8,9,... Zbiór liczb całkowitych oznacza się symbolem = \{...,−9,−8,−7,−6,−5,−4,−3,−2,−1,0,1,2,3,4,5,6,7,8,9,...\} Można wyróżnić zbiór liczb całkowitych dodatnich jak i ujemnych: Liczby wymierne Liczby wymierne to takie liczby, które można zapisać w postaci ułamka zwykłego:\frac{n}{m} n oraz m są liczbami całkowitymi, należy pamiętać że m musi być różne od 0 (m≠0) Zbiór liczb wymiernych oznaczamy symbolem Q. Liczby niewymierne Liczby niewymierne to takie liczby, które nie można zapisać za pomocą ułamka zwykłego. Liczby te tworzą wraz z liczbami wymiernymi zbiór liczb rzeczywistych R. Przykłady liczb niewymiernych:\sqrt{3}, \sqrt{5}, 3\sqrt{3}, π Liczby parzyste Liczby parzyste to takie liczby całkowite, które dają się podzielić przez dwa bez reszty. Wzór na liczbę parzystą ma postać:2k dla k∈C Przykładami liczb parzystych są:...,-42,−2,0,6,10,18,48,100,180,... Liczby nieparzyste Liczby nieparzyste, to takie liczby całkowite, które nie dają się podzielić przez dwa bez reszty. Resztą z dzielenia jest jeden. Ogólny wzór na każdą liczbę parzystą jest więc następujący:2k+1 dla k∈C Co ciekawe suma dwóch liczba nieparzystych będzie liczba parzystą, natomiast iloczyn dwóch liczb nieparzystych będzie liczbą nieparzystą. Przykłady liczb nieparzystych:...,−13,−1,1,9,17,33,101,... Liczby przeciwne Liczby przeciwne, to dwie takie liczby, których suma wynosi zero. Najprościej mówiąc jedna liczba jest do drugiej przeciwna, jeśli ma taką samą wartość, lecz przeciwny znak. Przykłady liczb przeciwnych:Liczba 1 jest przeciwna do −1, gdyż 1+(−1)=0Liczba \frac{1}{3} jest przeciwna do -\frac{1}{3}, gdyż \frac{1}{3}+(-\frac{1}{3})=0Liczba −π jest przeciwna do π, gdyż −π+π=0 Liczby odwrotne Liczba odwrotna do danej liczby a, to taka liczna b, że a∗b=1. Jeszcze prościej mówiąc: Liczba odwrotna do liczby a, to liczba \frac{1}{a}, gdyż a∗\frac{1}{a}=1. Przykłady:Liczba odwrotna do liczby 3, to \frac{1}{3}, gdyż 3∗\frac{1}{3}=1Liczba odwrotna do liczby \frac{7}{8}, to \frac{8}{7}, gdyż \frac{7}{8}∗\frac{8}{7}=1Liczba odwrotna do liczby \sqrt{3}, to \frac{1}{\sqrt{3}}, gdyż \sqrt{3}∗\frac{1}{\sqrt{3}}=1 Liczby pierwsze Liczby pierwsze to liczby naturalne większe od jeden, które dzielą się tylko przez jeden i samą siebie. Zbiór liczb pierwszych w przedziale od 1 do 100 jest następujący:x∈\{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97\} Liczby złożone Liczby złożone to liczby naturalne większe od jeden, które mają więcej niż dwa dzielniki. W związku z tym każda liczba większa od jeden nie będąca liczbą pierwszą jest liczbą złożoną. Przykłady liczb złożonych:4,6,9,10,12,14,15,16,18,20,21,22,24,25,26,... dlatego, że:4=2∗26=3∗29=3∗310=5∗212=6∗2=3∗2∗2 Liczba pi Liczba π, to liczba wyrażająca stosunek długości okręgu do jego średnicy. Liczba π w przybliżeniu jest równa:π≈3,1415926536.... Liczba π jest liczbą niewymierną i przestępną. Notacja wykładnicza Aby zapisać liczbę w notacji wykładniczej musimy skorzystać ze wzoru:a⋅10^n gdzie: a – jest to liczba rzeczywista z przedziału 0) Wzory działań na potęgacha^m⋅a^n=a^{m+n} \frac{a^m}{a^n}=a^{m−n} a^n⋅b^n=(a⋅b)^n \frac{a^n}{b^n}=(\frac{a}{b})^n (a^m)^n=a^{m⋅n} Pierwiastki Pierwiastkowanie liczb jest to działanie arytmetyczne odwrotne do potęgowania. Pierwiastek arytmetyczny stopnia n z liczby nieujemnej a, to taka liczba nieujemna b, która spełnia następującą równość b^n=a. Pierwiastek zapisujemy symbolem \sqrt[n]{a}.\sqrt[n]{a}=b⇔b^n=a gdzie: a – liczba pierwiastkowana, n – stopień pierwiastka, b – pierwiastek n-go stopnia z liczby a – wynik pierwiastkowania. Wzory działań na pierwiastkach\sqrt{a}*\sqrt{b} = \sqrt{a*b}\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}\sqrt[n]{a}=a^{\frac{1}{n}}\sqrt{a^2} = |a| NWW Najmniejsza wspólna wielokrotność (NWW) jest związana tylko z liczbami naturalnymi. Jest to taka najmniejsza liczba, która dzieli się bez reszty przez te dowolne liczby naturalne. Najmniejsza wspólna wielokrotność najczęściej używana jest w znajdowaniu wspólnego mianownika. Przykład: Mając liczby 3 i 4 można wypisać ich wielokrotności w następujący sposób: wielokrotności liczby 3 – 3;6;9;12;15;18;21;24;27;30;33;36;⋯, wielokrotności liczby 4 – 4;8;12;16;20;24;28;32;36;⋯, Najmniejszą wspólną wielokrotnością jest najmniejsza z zaznaczonych liczb czyli 12. NWW(3;4)=12 Jak obliczyć najmniejsza wspólna wielokrotność? Obie liczby należy rozłożyć na czynniki pierwsze, następnie zakreślić czynniki, które się powtarzają w obu rozkładach, potem bierzemy pierwszą liczbę i czynniki niezakreślone z drugiego rozkładu i mnożymy przez siebie. 12 | (2) 6 | 2 3 | (3) 1 | 30 |(2) 15 |(3) 5 | 5 1 | NWW(12;30) = 12 * 5 = 60 lub NWW(12;30) = 30 * 2 = 60 NWD Największy wspólny dzielnik (NWD) – jest to liczba naturalna, przez którą można podzielić dowolną parę liczb całkowitych, tak aby z dzielenia nie została reszta. Jak znajduje się największy wspólny dzielnik? Mając dwie liczby, rozkładamy je na czynniki pierwsze, potem wybieramy te, które się powtarzają w obu liczbach i mnożymy je przez siebie. Przykład: NWD(54; 36): 54 | (2) 27 | (3) 9 | (3) 3 | 3 1 | 36 | (2) 18 | 2 9 | (3) 3 | (3) 1 | NWD(54; 36) = 2 * 3 * 3= 18 Usuwanie niewymierności z mianownika Usuwanie niewymierności z mianownika – jest to proces polegający na usunięciu pierwiastków z mianownika ułamka. Najczęściej wykonujemy to mnożąc licznik i mianownik ułamka przez tę samą liczbę. Najlepszy będzie przykład:\frac{2}{\sqrt{3}} = \frac{2*\sqrt{3}}{\sqrt{3}*\sqrt{3}} = \frac{2\sqrt{3}}{3} Logarytmy Logarytm – przy podstawie a z liczby b oznacza taką liczbę c, będącą potęgą, do której podstawa logarytmu a musi być podniesiona, aby dać liczbę logarytmowaną b, czyli:log_ab=c⇔a^c=b Logarytm dziesiętny – to taki logarytm, którego podstawą jest liczba 10. W zapisie logarytmu dziesiętnego pomija się podstawę logarytmu, zapisując log_x lub lg_x, co jest równoznaczne z log_{10} Logarytm naturalny – to taki logarytm, którego podstawą jest liczba e równa w przybliżeniu 2,718281828. Logarytm naturalny zapisujemy jako lnx, co jest równoznaczne z wzory: Jeżeli a>0,a≠1,b>0 oraz c>0, to:log_ab+log_ac=log_a(b⋅c)log_ab−log_ac=log_a(\frac{b}{c})n⋅log_ab=log_a(b^n)=log_{a^{\frac{1}{n}}}ba^{log_ab}=blog_ab=\frac{log_cb}{log_ca} Wartość bezwzględna Wartością bezwzględną – dowolnej liczby rzeczywistej x jest: – ta sama liczba rzeczywista x, gdy x≥0 – liczba −x (przeciwna do x), gdy x. W obu przypadkach domykamy nawiasy ze względu na znak mniejszy-równy (≤) oraz więszky-równy(≥). Zbiory Zbiór – to pewna całość złożona z pewnej ilości obiektów, tymi obiektami mogą być liczby całkowite, książki na regale, buty w szafce i wiele innych. Zbiory oznaczamy zawsze wielkimi literami alfabetu. Każdy zbiór składa się z elementów, elementy oznaczamy małymi literami. Wyjątkiem jest zbiór pusty, który nie zawiera żadnego elementu. Przykłady zbiorów:Suma zbiorów – A∪BSuma zbiorówIloczyn zbiorów – A∩BIloczyn zbiorówRóżnica zbiorów – A\BRóżnica zbiorów A\BRóżnica zbiorów – B\ARóżnica zbiorów B\AZbiór – AZbiór AZbiór – BZbiór BZbiór pusty – A∩B = ØZbiór pusty Własności zbiorów: – przemienność sumy zbiorów A ∪ B = B ∪ A – łączność sumy zbiorów (A ∪ B) ∪ C = A ∪ (B ∪ C) – rozdzielność sumy względem iloczynu zbiorów A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) – przemienność iloczynu zbiorów A ∩ B = B ∩ A – rozdzielność iloczynu względem sumy zbiorów A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) – łączność iloczynu zbiorów (A ∩ B) ∩ C = A ∩ (B ∩ C) – prawa de Morgana dla zbiorów (A ∪ B)' = A' ∩ B' oraz (A ∩ B)' = A' ∪ B' Oś liczbowa Prostą, na której obrano punkt zerowy, jednostkowy (odległość między punktem zerowym a jednostkowym jest równa 1) oraz jeden ze zwrotów tej prostej uznano za dodatni nazywamy osią liczbową. Każdej liczbie rzeczywistej można przyporządkować dokładnie jeden punkt na osi liczbowej. Liczbę x przyporządkowaną punktowi P na osi liczbowej nazywamy współrzędną punktu P na tej rzeczywiste – wykres Jak określić współrzędne punktów A,B,C,D,E Ponieważ punkt E jest oddalony od punktu zerowego o dwie i pół jednostki w kierunku osi liczbowej, jego współrzędna wynosi 2,5. Punkt C jest oddalony o jedną jednostkę (współrzędna zatem jest równa 1). Punkt B (podobnie jak punkt C) jest również oddalony od punktu zerowego o jedną jednostkę, ale w stronę przeciwną niż wynosi zwrot osi liczbowej, współrzędną punktu B jest zatem liczba -1. Współrzędna punktu A jest liczba -2, a punktu D liczba 0,5. Nasuwa się pytanie czy zero jest liczbą rzeczywistą? Tak, zero jest liczbą rzeczywistą. Należy przy tym także do zbioru liczb wymiernych, całkowitych i naturalnych (w zależności od przyjętej umowy). Wykonalność działań w zbiorze liczb rzeczywistych W zbiorze liczb rzeczywistych wykonalne są wszystkie podstawowe działania: dodawanie, odejmowanie, mnożenie i dzielenie, za wyjątkiem dzielenia przez zero. Podsumowanie Jest to największy zbiór występujący w matematyce, można go znaleźć w każdym dziale matematyki jaki poznajemy w szkole. Umiejętność wykorzystywania znajomości rozróżniania zbiorów przydaje się w dalszych etapach kształcenia. W ramach przyswojenia nowej wiedzy gorąco zapraszam do zapoznania się z zadaniami również:Zadania zamknięteĆwiczenia krótkiej odpowiedziZadania otwarte

Zapisz w postaci a pierwiastek z b tak aby liczba była jak najmniejsza liczba naturalna Zobacz odpowiedź Reklama Reklama

Najmniejsza dwucyfrowa liczba to 10, a największa to 99. Najmniejsza liczba z trzema cyframi to 100, a największa 999. Tak więc pod względem cyfr 10 jest najmniejszą liczbą. Ale pod względem wartości 1 to najmniejsza jest największa dwucyfrowa liczba?Milionowa dwucyfrowa liczba to 99. Największa trzycyfrowa liczba to 999. Pod względem cyfr 99 jest największą liczbą. Ale pod względem wartości 99999 to największa jest najmniejsza cyfra?Najmniejsza jednocyfrowa liczba to 1 (jeden), a największa jednocyfrowa liczba to 9. Gdy cyfry są używane jako wielkość liczbowa, stają się liczbami. Tak więc pod względem cyfr 1 jest najmniejszą liczbą. Ale pod względem wartości 0 jest najmniejszą jest najmniejsza 3-cyfrowa liczba?Najniższa trzycyfrowa liczba to 100, a najwyższa trzycyfrowa liczba to 999. Tak więc pod względem cyfr 100 jest najmniejszą liczbą. Ale pod względem wartości 1 to najmniejsza najmniejsza dwucyfrowa liczba pierwsza?Najmniejsza dwucyfrowa liczba pierwsza to 11. Zatem pod względem cyfr 11 jest najmniejszą liczbą. Ale pod względem wartości 2 to najmniejsza jest najmniejsza liczba 6 cyfr?100 000 to najmniejsza liczba 6-cyfrowa, ponieważ 100000 – 1 daje liczbę 5-cyfrową. W rezultacie 100 000 to najmniejsza liczba 6-cyfrowa. 1 to najmniejsza liczba, jest różnica między najmniejszą 3-cyfrową liczbą a największą 2-cyfrową liczbą?Różnica między najmniejszą 3-cyfrową liczbą (100) a największą 2-cyfrową liczbą (99) wynosi 1. Tak więc, jeśli chodzi o cyfry, 100 jest najmniejszą liczbą. Ale pod względem wartości 0 jest najmniejszą jest liczba 2 większa niż najmniejsza 9-cyfrowa liczba?Ponieważ najmniejsza 9-cyfrowa liczba to 100000000. O 2 więcej niż ta liczba to 100000002. Tak więc, jeśli chodzi o cyfry, 100000002 jest najmniejszą liczbą. Ale pod względem wartości 1 to najmniejsza 0 jest liczbą cyfrową?W języku C jest ona dosłownie zdefiniowana jako „zero” (w szczególności ta wartość nie jest używana w żadnych obliczeniach). Jest to liczba i cyfra, która może być użyta do przedstawienia jej w postaci liczbowej. Odgrywa ważną rolę w matematyce jako addytywna identyczność liczb całkowitych, liczb rzeczywistych i innych struktur algebraicznych, ponieważ jest to jedyna liczba całkowita (i w konsekwencji jedyna liczba rzeczywista), która nie jest ani dodatnia, ani ujemna. Innymi słowy, 0 to najmniejsza jest największa i najmniejsza liczba?Największą jest więc 8741. Aby uzyskać najniższą liczbę, najmniejsza cyfra 1 jest umieszczana na miejscu tysięcy, następna wyższa cyfra 4 na pozycji setki, jeszcze większa cyfra 7 na miejscu dziesiątki i największa cyfra 8 na miejscu jedynki lub jednostek . W rezultacie 1478 jest najmniejszą liczbą jest największa dwucyfrowa liczba pierwsza?Liczba to 25. liczba pierwsza (największa dwucyfrowa liczba pierwsza o podstawie 10), następująca po 89 i poprzedzająca uczysz 3-cyfrowej liczby?Najlepszym sposobem na nauczenie się trzycyfrowej liczby jest rozpoczęcie od jedynego miejsca i pójście w górę. Tak więc, jeśli uczysz liczby 512, zacznij od 2, a następnie przejdź do 5, a następnie 1. Możesz również użyć wykresów wartości miejsc, aby to wyjaśnić. Innym sposobem myślenia o tym jest to, że liczba 100 jest punktem wyjścia dla liczb trzycyfrowych, więc każda liczba większa niż 100 może być uważana za liczbę trzycyfrową. Wreszcie, możesz również użyć manipulacji, takich jak łączenie kostek lub bloków o podstawie dziesięciu, aby pomóc w budowaniu 2 jest liczbą pierwszą i dlaczego?Liczba pierwsza to dodatnia liczba całkowita, która nie ma żadnych wspólnych czynników z żadną inną liczbą. 2 ma tylko dwa różne dzielniki, ponieważ dzielniki 2 to 1 i 2. Jedynym powodem, dla którego większość liczb parzystych jest złożona, jest to, że z definicji muszą być dzielone przez dwa (liczba pierwsza). num = int( num) liczby. append( num) except ValueError: print "Nie podales liczby". Najszybciej sprawdzić czy jest to liczba jest rzutując ją do INTa i obsłużyć wyjątek. W PY masz funkcje min i max które z listy znajdują ci najmniejszy i największy element. Tytuł: Odp: Największa i najmniejsza liczba. Wiadomość wysłana przez Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem \(\mathbb{R} \). Liczbami rzeczywistymi są np.: \[0,\ 1,\ -3,\ \frac{5}{6},\ \sqrt{2},\ \pi \] Wypisaniem zbioru cyfr, z jakich składa się zadana liczba rzeczywista 2018-05-28 08:03; js Funkcja pobierająca rzeczywista szerokość diva 2013-04-29 11:52; Sprawdzenie czy liczba jest liczbą pierwszą 2011-09-30 17:34; Jak przekazać liczbę rzeczywistą do funkcji main(). 2016-07-24 19:09; liczba 2003-05-24 15:02; Liczba 2003-11-11 02:29
tranto Użytkownik Posty: 64 Rejestracja: 3 paź 2009, o 20:20 Płeć: Kobieta Podziękował: 12 razy Co to jest liczba rzeczywista? Co to jest liczba rzeczywista? Podręczniki szkolne nie wyjaśniają tego pojęcia w najmniejszym stopniu. Dawniej traktowałam je jako oczywiste, ale z czasem pojawiły się wątpliwości (zaczęłam uczciwie zadawać sobie pytania, skąd wiem to i tamto). Gdzie mogę znaleźć jakieś podstawowe wiadomości na temat liczb rzeczywistych: jak się je definiuje i jak wyprowadza się ich podstawowe własności? Zależy mi na tym, żeby te informacje nie wykraczały za bardzo poza poziom liceum, żeby były dla mnie zrozumiałe. Skąd wiadomo, że każdej liczbie rzeczywistej można przyporządkować dokładnie jeden punkt na osi liczbowej i na odwrót, każdy punkt osi odpowiada dokładnie jednej liczbie rzeczywistej? Jaka jest ścisła definicja rozwinięcia dziesiętnego? Podejrzewam, że to ma coś wspólnego z granicami ciągów. Skąd wiadomo, że każda liczba rzeczywista ma rozwinięcie dziesiętne: - skończone lub nieskończone okresowe, gdy jest liczbą wymierną, - nieskończone nieokresowe, gdy jest liczbą niewymierną? Zadałam tutaj parę pytań, które nasunęły mi się jako pierwsze. PS Proszę nie śmiać się, jeśli zadaję banalne pytania. ares41 Użytkownik Posty: 6499 Rejestracja: 19 sie 2010, o 08:07 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 142 razy Pomógł: 922 razy Co to jest liczba rzeczywista? Post autor: ares41 » 4 lip 2012, o 00:06 Fichtenholz Rachunek różniczkowy i całkowy Tom I. Wstęp Althorion Użytkownik Posty: 4541 Rejestracja: 5 kwie 2009, o 18:54 Płeć: Mężczyzna Lokalizacja: Wrocław Podziękował: 9 razy Pomógł: 662 razy Co to jest liczba rzeczywista? Post autor: Althorion » 4 lip 2012, o 13:07 Liczba rzeczywista to element zbioru liczb rzeczywistych. I dopiero ten się definiuje. Albo przekrojami Dedekinda (których wytłumaczenie znajdziesz, jak ares41 napisał, u Fichtenholza), albo trochę bardziej minimalistycznie i bez zrozumienia, jako ciało uporządkowane \(\displaystyle{ \left( \RR ; +; \cdot ; 0; 1; \le\right)}\), gdzie każdy niepusty i ograniczony z góry podzbiór ma kres górny. Więcej możesz znaleźć chociażby na Wikipedii. Intuicyjnie -- liczby rzeczywiste stanowią "uciąglenie" liczb wymiernych. Wszędzie tam, gdzie pomiędzy jakimiś liczbami wymiernymi istniałaby "luka", "dopycha się" inne liczby, by ją zapełnić i całość nazywa się liczbami rzeczywistymi jest ścisła definicja rozwinięcia dziesiętnego? Podejrzewam, że to ma coś wspólnego z granicami ciągów. Słusznie. Właściwie bardziej z granicami szeregów, ale tak. Każdą cyfrę rozwinięcia traktujemy jako element ciągu równy iloczynowi wartości cyfry i jej pozycji, tzn. odpowiedniej potęgi dziesiątki. Z tego właśnie wynika odpowiedź na Twoje kolejne pytanie, o okresowe i nieokresowe rozwinięcia liczb wymiernych i niewymiernych.
Udowodnić, że liczba jest niewymierna. ZADANIE 12. Udowodnić, że liczba jest niewymierna. 6. Wartość bezwzględna liczby rzeczywistej. Dla danej liczby rzeczywistej r jej wartość bezwzględna, zwana też modułem, jest to liczba dodatnia lub zero, oznaczana jest przez i określona w następujący prosty sposób: DEFINICJA 1.8. .
  • bhwwpu9nev.pages.dev/215
  • bhwwpu9nev.pages.dev/307
  • bhwwpu9nev.pages.dev/867
  • bhwwpu9nev.pages.dev/456
  • bhwwpu9nev.pages.dev/308
  • bhwwpu9nev.pages.dev/471
  • bhwwpu9nev.pages.dev/440
  • bhwwpu9nev.pages.dev/65
  • bhwwpu9nev.pages.dev/987
  • bhwwpu9nev.pages.dev/337
  • bhwwpu9nev.pages.dev/270
  • bhwwpu9nev.pages.dev/860
  • bhwwpu9nev.pages.dev/335
  • bhwwpu9nev.pages.dev/916
  • bhwwpu9nev.pages.dev/58
  • liczba r jest najmniejsza liczba rzeczywista